

DistCache (Distributed Cache)

Distcache is a open-source distributed in-memory cache and database.
Operations are mostly asynchronous to achieve high performance.
It is implemented purely in python without any external dependency
which should make it easier to install and get started with.
One of design goal of this project is ease of use and less cognitive load to users of
similar caching/database systems like Redis, Memcached.

Features

	
	Data types supported:

	
	All basic data types and their combination. For instance, int, str, dict, set, tuple, list, etc and

objects that have only these types as their attributes are supported.
- You can even read any object (image, pdfs, etc) in binary format and save them as key, value pair.

	Key cache operations are logged so when the server fails, the cache can be reconstructed from the log files.

	The APIs are similar to Memcached and Redis to reduce cognitive when migrating between platforms.

	Since, distcache has pure python implementation the installation process should painless. It’s makes it easier to get started up and running.

	Its’ architecture assumes that the cache clients and servers can fail and plans for it. The impact is minimal on adding and removing cache servers.

	Snapshot the servers at regular intervals to avoid cold starts upon crash or planned shutdowns

	Log replays also available for slow but complete reconstruction of the cache upon server crash, error or shutdown.

	Thread safe increment and decrement operations on keys.

	Health of the cache servers is monitored by the client.

Install

pip install distcache

Platform

	Linux

	Windows

	Python 2.7 to Python 3.5

Quick Start

client.py

 from distcache.cache_client import CacheClient

 client = CacheClient()

 # Cache operations
 client.set("brazil", "football")
 client.set("harry", "potter")
 client.set(1, 2)
 client.set(3, 6)
 client.set("hey", "hola")
 client.get("hey")
 client.get(1)
 client.set("hey", "there")
 client.get("hey")
 client.delete(3)
 client.get(3)
 client.get("brazil")

server.py

 from distcache.cache_server import CacheServer

 server = CacheServer('localhost', 2050)

Note: Make sure to include the address of the server in the self.server_pool list in config.py file.

Run server.py and client.py.

APIs

All distcache APIs

Usage

1. You have multiple servers serving users. And you need to increment user id across the server such that there is no duplicate.
Similarly you can store product_id, session_id, user_id, etc.

2. 80% of the database access is generated by 20% of the queries. You should absolutely not be doing duplicate computations.
Cache the results. And, the figures vary and you can still use caching service. It just makes things faster.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 distcache	

 	
 	
 distcache.cache_client	

 	
 	
 distcache.cache_server	

 	
 	
 distcache.consistent_hashing	

 	
 	
 distcache.health_client	

 	
 	
 distcache.health_server	

 	
 	
 distcache.logger	

 	
 	
 distcache.lru_cache	

 	
 	
 distcache.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S

A

 	
 	add() (distcache.cache_client.CacheClient method)

 	(distcache.lru_cache.LRUCache method)

 	
 	add_node() (distcache.consistent_hashing.ConsistentHashing method)

C

 	
 	CacheClient (class in distcache.cache_client)

 	CacheServer (class in distcache.cache_server)

 	
 	close() (distcache.logger.Logger method)

 	ConsistentHashing (class in distcache.consistent_hashing)

D

 	
 	decrement() (distcache.cache_client.CacheClient method)

 	delete() (distcache.cache_client.CacheClient method)

 	(distcache.lru_cache.LRUCache method)

 	distcache.cache_client (module)

 	distcache.cache_server (module)

 	
 	distcache.consistent_hashing (module)

 	distcache.health_client (module)

 	distcache.health_server (module)

 	distcache.logger (module)

 	distcache.lru_cache (module)

 	distcache.utils (module)

E

 	
 	execute_query() (distcache.cache_client.CacheClient method)

F

 	
 	flush() (distcache.logger.Logger method)

G

 	
 	get() (distcache.cache_client.CacheClient method)

 	(distcache.lru_cache.LRUCache method)

 	
 	get_node() (distcache.consistent_hashing.ConsistentHashing method)

 	gets() (distcache.cache_client.CacheClient method)

H

 	
 	handle_client() (distcache.cache_server.CacheServer method)

 	
 	HealthClient (class in distcache.health_client)

 	HealthServer (class in distcache.health_server)

I

 	
 	increment() (distcache.cache_client.CacheClient method)

L

 	
 	log() (distcache.logger.Logger method)

 	log_bytes() (distcache.logger.Logger method)

 	
 	Logger (class in distcache.logger)

 	LRUCache (class in distcache.lru_cache)

M

 	
 	monitor() (distcache.cache_server.CacheServer method)

 	(distcache.health_server.HealthServer method)

P

 	
 	parse_message() (distcache.cache_server.CacheServer method)

 	
 	probe_health() (distcache.health_server.HealthServer method)

R

 	
 	read_logs() (distcache.logger.Logger method)

 	receive_message() (in module distcache.utils)

 	reconstruct() (distcache.cache_server.CacheServer method)

 	
 	relay_health() (distcache.health_client.HealthClient method)

 	remove_node() (distcache.consistent_hashing.ConsistentHashing method)

 	replay_log() (distcache.cache_server.CacheServer method)

 	report_health() (distcache.health_server.HealthServer method)

S

 	
 	send_message() (in module distcache.utils)

 	send_receive_ack() (in module distcache.utils)

 	set() (distcache.cache_client.CacheClient method)

 	(distcache.lru_cache.LRUCache method)

 	
 	snapshot() (distcache.cache_server.CacheServer method)

 	summary() (distcache.health_server.HealthServer method)

Welcome to distcache’s APIs!

This section lists all the API for distcache

Cache Client

Implements distcache client. It interacts with the users.

Note: This package lets all the individual client discover the health of the servers themselves.

	
class distcache.cache_client.CacheClient

	Implements cache client. It responds to user requests.
?? monitors health of cache clients.

	
add(key, diff)

	Add diff to the value corresponding to key in a thread safe manner.
:param diff: the amount to be added to the value of key
:return: boolean indicating if the operation was successful or not.
:rtype: bool

	
decrement(key)

	Decrement value corresponding to the key in a thread-safe manner.
:return: boolean indicating if the operation was successful or not.
:rtype: bool

	
delete(key)

	Get the value of key from the cache
:return: corresponding value for the key

	
execute_query(key, message)

	The central place to execute all the client queries.
It finds the server for the query. Creates a socket. Sends message to the server.
And conveys the server response to the calling function.

	Parameters

	
	key – the user defined key which is to be manipulated.

	message – tuple of key plus operation and optionally values.

	Returns

	response of the server

	
get(key)

	Get the value of key from the cache
:return: corresponding value for the key

	
gets(keys)

	Gets the values of keys from the cache. Same as get but avoids expensive network calls.
If you want two keys which are on different server, gets is same as get or a bit slower.
:return [list of values]: corresponding values for the keys

	
increment(key)

	Increment value corresponding to the key in a thread-safe manner.
:return: boolean indicating if the operation was successful or not.

	
set(key, value)

	Set or update the value of key from the cache. Also updates the LRU cache for already existing key or (key, value)
:return: bool value indicating if the operation was successful or not.

Cache Server

	
class distcache.cache_server.CacheServer(host='localhost', port=2050, capacity=100, expire=0, filename=0)

	Implements cache client. It has different types of cache eviction policies at disposal.
It responds to queries of cache server.

By default all of the operations that the cache server carries out are logged and can be used to reconstruct
the cache in the event of error or server shutdown.

The snapshots are however the very cache that will be the result of replaying logs but may miss some of the
latest server operations. It will be faster to rebuild from snapshot but saving snapshots are time consuming
operations.

	
handle_client(client_socket)

	Listen to queries from specific client.
:param client_socket:
:param client_address:
:return:None

	
monitor()

	Listens for new connections and queries from the clients. And add it as a cache server.

	
parse_message(message)

	Parse and execute the command
:param message: the message sent by the cache_server
:return: depends on the operation that was carried out after parsing message

	
reconstruct()

	Load the cache from the latest database snapshot
:return: None

	
replay_log()

	Rebuild the cache by treating each of the logged objects as a client operation.
:return: None

	
snapshot()

	Snapshot every conf.save_every_k_seconds
:return: None

Consistent Hashing

Consistent Hashing

Consistent hashing is scheme which does not depend on the number of servers.
Each server is assigned a position on a abstract circle or a hash ring.

So you have a list of servers [a, b, c]

You make k copies of them. It makes the consistent hashing better.

servers = [a1, a2, ak, b1, b2, bk, c1, c2, ck]

Of course, you can have weighted servers so that better servers have higher chances of landing a keys.

Now we assign them a position in the 32bit ring.

[…ak….b2….c1….c2….a2…..b1….bk….a1…..ck……….]

[…10….19k…1M…28M….54.2M..60M…67M…100M…124M..23^32-1]

So we need to sort the servers according to their position.

Now when user says which server to send a particular key “apple”.

We hash the key: apple-> 16M.

What’s larger than 16M and has a server? 28M.

Great, we send the key to c2. c2 is c, remember?

What happens when a server is down?

There is no response and the query has to be queried against a database.

or any other function. And, it has to be stored again in the server.

If the server c went down. Our key ring would be updated to something like this.

[…ak….b2………..a2…..b1….bk….a1……………..]

[…10….19k……….54.2M..60M…67M…100M……..23^32-1]

We hash the key: apple-> 16M.

What’s larger than 16M and has a server? 54.2M.

Great, we send the key to a2.

Similarly, we can add servers in the same way.

There will be cache misses first because the server next to the new server on the ring has the key.

Then those keys will expire out or will be LRU invalidated.

Similarly, there is cache miss when a server goes down. All the queries that were to be handed by that.

server are sent to the next server.

Notes: We compute position for servers until there is no collision.

	Example usage:

	servers = [‘192.168.0.246:11212’, ‘192.168.0.247:11212’, ‘192.168.0.249:11212’]
weights = [3, 3, 3]
ring = ConsistentHashing(servers, weights)
server = ring.get_node(‘my_key’)

TODO: Allow users to specify both number of replicas and weight of servers
TODO: Use a better hashing technique. Something that distributes more uniformly among the keys.

	
class distcache.consistent_hashing.ConsistentHashing(nodes=None, weights=None)

	Implements consistent hashing

	
add_node(node, weight=5)

	Add node to the HashRing of consistent hashing scheme.

	Parameters

	
	node – new node to be added (ip address in this case)

	weight – weight of the new node to be added.

	Returns

	None

	
get_node(key)

	Get the node/server where the key is or should be.

	Parameters

	key – key whose node/server is to be computed.

	Returns

	node where the key should be stored or retrived from.

	
remove_node(node)

	Remove node from the ring because it is dead or unavailable.

	Parameters

	node – node to be removed from the consistent hashing scheme.

It will no longer be considered while hashing.

	Returns

	None

Health Client

	
class distcache.health_client.HealthClient

	Implements a health client to respond to health probes from health server

	
relay_health()

	If it receives any health probe from the server it replies with an ACK_MESSAGE to acknowledge that it is alive
and well.

	Returns

	None

Health Server

	
class distcache.health_server.HealthServer

	Implements a health server to monitor health of all clients and report it to the cache server.

	
monitor()

	Listens for new HealthClient connections. Monitors the health of the clients.

	Returns

	None

	
probe_health(client_socket, client_address)

	Sends heart beat every k second. If three heart beat requests are not acknowledged for n times, the client is dead.

	Parameters

	
	client_socket – client socket on which health probes are to be sent and response received.

	client_address – client address

	Returns

	None

	
report_health(message, client_socket)

	Report the cache clients health to the server

	Parameters

	
	message – any message. In this case list of unavailable servers

	client_socket – socket object connected to the cache server

	Returns

	None

	
summary()

	Keep logging the number of healthy clients in a fixed time interval

	Returns

	None

Logger

	
class distcache.logger.Logger(filename='cache.db', mode='ab', batch_size=1)

	Implements a simple logger

	
close()

	Close the logger. Close the log file safely

	
flush()

	Writes whatever object is in the log queue is written to the disk.
No worries if someone appended to the logs when it is being written

	
log(object)

	Write objects that are not bytes type in batches to the log file
:param object: basically anything [int, str, list, etc]

	Object instances:

	(“set”, “hi”, “greeting”),
(“set”, 1, 100),
(“del”, 1)

	Returns

	None

	
log_bytes(object)

	Write objects of bytes type in batches to the log file
:param object: basically any serialized object

	for instance:

	obj = (“life”, “is wonderful”)
byte_obj = pickle.dumps(obj)
logger = Logger()
logger.log_bytes(byte_obj)

	You can do the same with images or pdfs

	obj = open(“some_image_file.png”, mode=’rb’).read()
logger = Logger()
logger.log_bytes(byte_obj)

Note: This function does not check if the object is not bytes. The user should do the checks.

	Returns

	None

	
read_logs()

	Reads logs from the file.

LRU Cache

Implementation of LRU Cache.

Implementing Cache in a separate class/file allows for robust testing and is a practice of loose-coupling.
It allows, in future, to implement other types of cache (eviction policy) and just interchange different types of cache.
Also, it allows clean code, in other places using cache.
Allows for easier reasoning of code.

Tested against leetcode’s test cases: https://leetcode.com/submissions/detail/359080389/.
In project, test cases would be way better though.

	
class distcache.lru_cache.LRUCache(capacity=100)

	Implements LRU Cache

	
add(key, diff)

	Add diff to the value corresponding to key in a thread safe manner.

	Parameters

	
	diff – (int, float, double) the amount to be added to the value of key

	key – the key on which operation is to be carried out

	Returns

	boolean indicating if the operation was successful or not.

	
delete(key)

	Deletes key from server. Nothing happens if the key does not exist in the cache.

	Parameters

	key – the key which is to be deleted from the cache

	Returns

	boolean indicating if the operation was successful or not.

	
get(key)

	Get the value corresponding to the key.
For now, the value of keys can not be boolean

	Parameters

	key – the key whose value is to be retrieved

	Returns

	value of the key if it exists, otherwise False.

	
set(key, value)

	The server decided the key value be stored in this client.
If it is new, just add to the cache
If the key is old, update it with new value and also the LRU

	Parameters

	key – key whose value is to be set. It can both be new key or previously stored key.

	Returns

	boolean indicating success of the operation

utils

Implements network utils like sending and receiving message over socket

	
distcache.utils.receive_message(client_socket, HEADER_LENGTH, FORMAT)

	Receives message on the client_socket

	Parameters

	
	client_socket – the socket on which message is received

	FORMAT – the format in which message length is to be encoded. (UTF-8 is default FORMAT)

	Returns

	False if receiving message was not successful. Else, returns whatever message was received after

deserializing it.

	
distcache.utils.send_message(message, client_socket, HEADER_LENGTH, FORMAT)

	Sends message on the client_socket.

	Message sending occurs in two stages:

	First, the message is serialized using serializer and the length of message is sent encoded in FORMAT.
Then, message is sent.

	Parameters

	
	message – the message to be sent. It can be any combination of different data types.

	client_socket – the socket on which message is sent

	FORMAT – the format in which length of message is to be encoded. (UTF-8 is default FORMAT)

	Returns

	None

	
distcache.utils.send_receive_ack(message, client_socket, HEADER_LENGTH, FORMAT)

	Sends message from the client_socket.
Receives message on the client_socket

	Parameters

	
	message – Any message/object that is to be sent.

	client_socket – the socket on which to send and receive message.

	HEADER_LENGTH – the header length of the message.

	FORMAT – the format in which message length is to be encoded. (UTF-8 is default FORMAT)

	Returns

	response received. False if no response was received

Indices and tables

	Index

	Module Index

	Search Page

 nav.xhtml

 Table of Contents

 		
 DistCache (Distributed Cache)

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

